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Guanine-rich DNA and RNA sequences can fold into unique
structures known as G-quadruplexes.1 Interest in G-quadruplexes
has increased since G-rich telomeric DNA sequences synthesized
by telomerase were shown to form G-quadruplexes in vitro, and a
number of biologically active RNA and DNA aptamers including
anti-HIV, anti-proliferative, and anti-coagulation aptamers consist
of G-quadruplex structures.1 Furthermore, G-quadruplexes have
recently been investigated as biosensors2 and for use in nanotech-
nology.3 The structures of G-quadruplexes can be divided into
several classes, depending on the parallel or antiparallel nature of
the strands and the number of G-rich tracts present in an oligo-
nucleotide.1 Oligonucleotides with single tracts of guanines form
intermolecular parallel tetrameric G-quadruplexes. Oligonucleotides
with two tracts of guanosines separated by two or more bases can
form both intermolecular antiparallel fold-back dimeric and parallel
tetrameric G-quadruplexes, and those with four tracts of guanosines
can form both intramolecular parallel and antiparallel structures
(Figure 1).1 Intermolecular [d(G4T4G4)]2 (Oxy12) and intramolecular
(G4T4)3G4 (Oxy28) G-quadruplexes formed by theOxytrichia
trifalax telomeric DNA sequence have been extensively studied
by CD4 and NMR spectroscopy5 and by crystallography.6 Despite
several possible folding topologies, the G-quadruplex formed by
Oxy28 has been observed only as an antiparallel crossover-basket
structure (Figure 1, structure I). The ability to control the folding
of G-quadruplexes would allow the physical, biochemical, and
biological properties of these various folding topologies to be
studied. Here we report a new method to control the folding of
G-quadruplex DNA by specifically positioning the conformationally
constrained nucleotide analogue 2′-O-4′-C-methylene-linked ribo-
nucleotide (LNA) into a DNA G-quadruplex.7

The distribution ofsynandanti glycosidic bond configurations
differs in the various G-quadruplex-folding topologies. For example,
the guanosine residues are alternativelysyn-anti-syn-anti along
the G4 tracts in the crossover-basket form ofOxy28, and each sugar
pucker is in the 2′-endo conformation,5 whereas the guanosine
residues are allanti in the intramolecular parallel, propeller
G-quadruplex formed by the human telomeric DNA sequence8 and
other parallel G-quadruplexes (for example Figure 1, structure III).1

Because sugars constrained in the 3′-endoconformation prefer the
glycosidic bond to be in theanti conformation, we hypothesized
that controlling the sugar pucker at selected positions would perturb
G-quadruplex-folding topology. To test this possibility, we studied
the ability of DNA oligonucleotides containing single LNA
substitutions (Figure 2) to affect the conformation of the intramo-
lecular G-quadruplex formed byOxy28.

We evaluated the thermal stability of G-quadruplexes formed
by Oxy28 with specifically positioned LNAs (see Table 1 for the
oligonucleotides used in this study) by UV-monitored thermal
denaturation experiments. Oligonucleotides were annealed by
heating the samples in 10 mM phosphate buffer containing either

50 mM Na+ or 50 mM K+ at 95°C for 5 min and then cooling the
samples at 1°C min-1 to room temperature. Samples were stored
at 4°C, with no special cooling, until they were analyzed. Prolonged
storage at 4°C did not influence the stability or the structure of
the molecules; however, the cooling rate of the annealing reaction
had a profound effect on stability with faster cooling rates giving
rise to less stable G-quadruplex structures. The presence of compact

Figure 1. Three possible folding topologies ofOxy28. I, an antiparallel
crossover basket; II, an antiparallel chair; and III, a parallel propeller. Open
circles represent guanosine residues. Arrows indicate the directionality of
the strands.

Figure 2. Structures of DNA and LNA. DNA is drawn in the C2′-endo
conformation. LNA is locked in the C3′-endo conformation.

Table 1. Thermal Stability of LNA-Containing G-Quadruplexes

a Entry 1 is theOxy28 DNA control. Underlined positions containsyn-
glycosidic bonds in theOxy28 DNA structure.5 Entries 2-9 are LNA-
containing oligonucleotides with the position of the LNA indicated.b Tm
was determined from the first derivative of the melting curve at 295 nm
with a heating rate of 1°C min-1. Values represent averages from
experiments at DNA concentrations of 5 and 25µM. Standard errors were
<0.5 °C in duplicate determinations.
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structures indicative of a G-quadruplex was established for each
oligonucleotide using nondenaturing gel electrophoresis (see Sup-
porting Information). UV heating and cooling curves at 295 nm
for each sequence were superimposable using a heating/cooling rate
of 1 °C min-1, suggesting folding kinetics faster than the cooling
rate. Melting temperatures were determined from the first derivative
of the melting curves (Table 1). Importantly, the melting temper-
ature was not sensitive to the oligonucleotide concentration over a
5-fold concentration range, suggesting that each structure had a
one-strand stoichiometry. In all cases, the presence of K+ allowed
a more stable structure than Na+, a trend routinely observed with
G-quadruplexes.9 In general, the presence of an LNA was desta-
bilizing to the G-quadruplex formed byOxy28. This was particularly
noticeable when an LNA was present at a guanosine residue. The
G-quadruplex with an LNA in position 2 was severely destabilized
in both K+- and Na+-containing solutions.

Next, we investigated the effects of LNA substitution on the
structure of foldedOxy28. Oligonucleotides were annealed in either
K+ or Na+, and CD spectra were obtained at 25°C (Figure 3). In
the presence of Na+, unmodified Oxy28 gave rise to a strong
maximum at 295 nm and a strong minimum at 260 nm (Figure 3,
Na+). Similarly, in the presence of K+, the spectrum of unmodified
Oxy28 displayed a strong maximum absorbance at 295 nm with a
shallow minimum at 260 nm (Figure 3, K+). These CD spectra are
indicative of an antiparallel G-quadruplex (Figure 1, structure I).1,4

The structures of LNA-containing oligonucleotides annealed in the
presence of Na+ were not affected by the presence or location of
LNA substitution (Figure 3, Na+). Each oligonucleotide produced
a strong absorbance at 295 nm, consistent with an antiparallel
structure. However, in K+-containing buffer the presence and
location of LNA substitution affected the structure (Figure 3, K+).
LNA substitution resulted in a complete change of the more stable
G-quadruplex structure (LNA in positions 2, 17, or 18), a mixture
of structures (LNA in positions 4, 15, or 16), or did not affect the
structure (LNA in positions 5 and 6). The new structure displayed
a CD spectrum with a maximum at 260 nm and a strong minimum
at 240 nm. Intermolecular parallel G-quadruplexes are well-

established structures, and intramolecular parallel G-quadruplexes
have recently been observed by crystallography8 and NMR
spectroscopy.10 In each of these reported cases, the CD spectra of
a parallel G-quadruplex exhibited a diagnostic signal at 260 nm.
Since we observed no concentration dependence on the CD spectra
or the thermal stability, we conclude that LNAs at positions 2, 17,
and 18 caused a shift in the thermodynamically preferred structure
from an intramolecular antiparallel to an intramolecular parallel
G-quadruplex (Figure 1, structure III).

Our studies represent the first to analyze the effect of confor-
mationally constrained nucleotide analogues on DNA structures
other than simple duplex and triplex.11 LNAs increase thermosta-
bility of duplex and triplex structures and increase the A-form
character of the nucleotides adjacent to the LNA. We found that
LNA can induce a change in the thermodynamically preferred struc-
ture of the G-quadruplex formed byOxy28 from an antiparallel to
a parallel structure. Previously, the folding of a G-quadruplex was
shown to be affected by the identity of the mono- and divalent
cations used to stabilize the structure.8,12Here we show that internal
modifications can be used to affect G-quadruplex-folding topology.
By using LNAs, which favoranti-glycosidic bonds, we could
produce parallel G-quadruplexes, which are known to containanti-
glycosidic bonds with the G tetrad. This method should find use in
determining the biological significance of G-quadruplex-folding
topology, controlling G-quadruplex folding for applications in nano-
technology, and in studying other nucleic acid-folding topologies.
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Figure 3. CD spectra of representative G-quadruplex structures. Spectra
were obtained in 10 mM phosphate buffer (pH) 7.5) with either 50 mM
Na+ and 1 mM EDTA, or 50 mM K+ and 1 mM EDTA.
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